Abstract

Metalloproteins are essential in biology. The incorporation of metal ion into metalloproteins significantly expands protein functionality and enhances protein stability. Over the last few years, atomic force microscopy-based single molecule force spectroscopy (SMFS) has evolved into a unique tool allowing for probing metalloproteins and metalligand bonds one molecule/bond at a time. Mechanical strength of a wide variety of metalligand bonds has been measured in metal-ligand complexes as well as in metalloproteins, providing detailed information of their underlying free energy profiles and the influence of the protein environment on the bond strength. SMFS experiments have directly demonstrated the effect of the metal binding on the mechanical stability of proteins. Moreover, SMFS has enabled the direct observation of the unfolding and folding of metalloproteins, revealing detailed mechanistic insight into the unfolding pathways modulated by the metal center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.