Abstract

Single-molecule electrochemical transistors are a type of novel molecular devices in which the tunneling current through the single-molecule junction is modulated by the electrochemical gate, and is considered a promising candidate to be employed in molecular integrated circuits for building the future "molecular computers." Benefiting from the particular interfacial electrical double layer, the current modulation process can be realized through direct orbital gating as well as electrochemical electron transfer driven by electrode potential, thus significantly enriching the functions of the transistor devices. This review focuses on the transfer characteristics and the performance of several typical types of single-molecule electrochemical transistors and the prospects for the fabrication toward integrated devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call