Abstract

The compaction of single DNA molecules by purified histones is studied using magnetic tweezers. The compaction rate increases rapidly when the histone concentration is increased from 0.002 to 0.2 mmol/L, and saturates when the concentration is beyond 0.2 mmol/L. The time course of compaction is exponential at low histone concentrations. It becomes sigmoidal at high concentrations. Cooperativity between the histones bound to DNA is proposed to be responsible for the transition. The histones are loaded onto DNA randomly at low concentrations. They tend to bind DNA cooperatively at high concentrations because the structural torsions of DNA induced by the bound histones become overlapping so that the binding of one histone facilitates the binding of others. Under very large forces, the compacted histone-DNA complex can be disrupted in a discrete manner with a step size of ∼60 nm. But the histones cannot be completely stripped off DNA, as is revealed by the lowered B-S transition plateau of the histone-bound DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.