Abstract

Multicolor fluorescence substantially expands the sensing capabilities of nanopores by complementing or substituting the resistive pulsing signals. However, to date single-fluorophore detection in multiple color channels has proven to be challenging primarily due to high photoluminescence (PL) emanating from the silicon nitride (SiN x) membrane. We hypothesize that the high bandgap of titanium oxide (TiO2) would eliminate the PL background when used as a substrate for a nanopore, and hence enable individual fluorophore sensing during the fast passage of biomolecules through the pore. Herein, we introduce a method for fabricating locally supported, free-standing, TiO2 membranes, in which solid-state nanopores can be readily drilled. These devices produce essentially no PL in the blue-to-red visible spectral range, even when excited by multiple lasers simultaneously. At the same time, the TiO2 nanopores exhibit low electrical noise comparable with standard SiN x devices. Importantly, the optical signal-to-background ratio (SBR) in single-molecule sensing is improved by an order of magnitude, enabling the differentiation among labeled DNA molecules of similar length based solely on their labeling scheme. Finally, the increased SBR of the TiO2 devices allows detection of single fluorophores conjugated to the lysine or cysteine residues of short polypeptides, thus introducing the possibility for optical based peptide/protein discrimination in nanopores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.