Abstract
Recent microscopy and nuclear magnetic resonance (NMR) studies have noticed substantial suppression of intracellular diffusion for positively charged proteins, suggesting an overlooked role of electrostatic attraction in nonspecific protein interactions in a predominantly negatively charged intracellular environment. Utilizing single-molecule detection and statistics, here, we quantify in aqueous solutions how protein diffusion, in the limit of low diffuser concentration to avoid aggregate/coacervate formation, is modulated by differently charged interactor proteins over wide concentration ranges. We thus report substantially suppressed diffusion when oppositely charged interactors are added at parts per million levels, yet unvaried diffusivities when same-charge interactors are added beyond 1%. The electrostatic attraction-driven suppression of diffusion is sensitive to the protein net charge states, as probed by varying the solution pH and ionic strength or chemically modifying the proteins and is robust across different diffuser-interactor pairs. By converting the measured diffusivities to diffuser diameters, we further show that in the limit of excess interactors, a positively charged diffuser molecule effectively drags along just one monolayer of negatively charged interactors, where further interactions stop. We thus unveil ubiquitous, net charge-driven protein-protein interactions and shed new light on the mechanism of charge-based diffusion suppression in living cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.