Abstract

Guanine-rich nucleic acids can form G-quadruplexes that are important in gene regulation, biosensor design and nano-structure construction. In this article, we report on the development of a nanopore encapsulating single-molecule method for exploring how cations regulate the folding and unfolding of the G-quadruplex formed by the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG). The signature blocks in the nanopore revealed that the G-quadruplex formation is cation-selective. The selectivity sequence is K+ > NH4+ ∼ Ba2+ > Cs+ ∼ Na+ > Li+, and G-quadruplex was not detected in Mg2+ and Ca2+. Ba2+ can form a long-lived G-quadruplex with TBA. However, the capability is affected by the cation–DNA interaction. The cation-selective formation of the G-quadruplex is correlated with the G-quadruplex volume, which varies with cation species. The high formation capability of the K+-induced G-quadruplex is contributed largely by the slow unfolding reaction. Although the Na+- and Li+-quadruplexes feature similar equilibrium properties, they undergo radically different pathways. The Na+-quadruplex folds and unfolds most rapidly, while the Li+-quadruplex performs both reactions at the slowest rates. Understanding these ion-regulated properties of oligonucleotides is beneficial for constructing fine-tuned biosensors and nano-structures. The methodology in this work can be used for studying other quadruplexes and protein–aptamer interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.