Abstract

The presented studies correlate the surface chemistry of electrochemically oxidized TiAlN hard coatings with the desorption forces of poly(acrylic acid) (PAA) at the electrolyte/oxide/TiAlN interface. Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) was performed at different pH values to investigate surface chemistry-induced changes in desorption force. The chemical state was characterized by X-ray photoemission spectroscopy and electrochemical analysis. The results show that the desorption forces continuously decrease with increasing pH in the range from pH 5 to 9. The comparison of the desorption forces on rf-sputtered titanium dioxide and aluminum oxide films shows that the electrochemically oxidized surface of TiAlN, in agreement with the revealed surface composition, shows interfacial adhesive properties in contact with PAA and water that resemble a pure titanium oxide layer. Load rate-dependent measurements were performed to analyze both the free energy barrier and the transition state distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.