Abstract

The single-molecule conductance of hydrogen-bonded and alkane systems are compared in this theoretical investigation. The results indicate that for short chains, the H-bonded molecules exhibit larger conductance than the alkanes. Although earlier experimental investigations attributed this observation to a large density of states (DOS) corresponding to an occupied molecular orbital below the Fermi energy, the current work indicates the presence of a Fano resonance in the transmission function in the vicinity of the Fermi energy. The inclusion of this observation is essential in understanding the behavior of these systems. We also address the characteristics of the H-bond for transport and provide an explanation for the presence of a turnover regime wherein the conductance of the alkanes becomes larger than the H-bonded systems. Incidentally, this feature cannot be explained using a simple DOS argument.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.