Abstract

Amino acid detection/identification methods are important for understanding biological systems. In this study, we developed single-molecule measurements for investigating quantum tunneling enhancement by chemical modification and carried out machine learning-based time series analysis for developing accurate amino acid discrimination. We performed single-molecule measurement of L-aspartic acid (Asp) and L-leucine (Leu) with a mercaptoacetic acid (MAA) chemical modified nano-gap. The measured current was investigated by a machine learning-based time series analysis method for accurate amino acid discrimination. Compared to measurements using a bare nano-gap, it is found that MAA modification improves the difference in the conductance-time profiles between Asp and Leu through the hydrogen bonding facilitated tunneling phenomena. It is also found that this method enables determination of relative concentration. even in the mixture of Asp and Leu. It improves selective analysis for amino acids and therefore would be applicable in medicine, diagnosis, and single-molecule peptide sequencing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.