Abstract

We measure the conductance of amine-terminated molecules by breaking Au point contacts in a molecular solution at room temperature. We find that the variability of the observed conductance for the diamine molecule-Au junctions is much less than the variability for diisonitrile- and dithiol-Au junctions. This narrow distribution enables unambiguous conductance measurements of single molecules. For an alkane diamine series with 2-8 carbon atoms in the hydrocarbon chain, our results show a systematic trend in the conductance from which we extract a tunneling decay constant of 0.91 +/- 0.03 per methylene group. We hypothesize that the diamine link binds preferentially to undercoordinated Au atoms in the junction. This is supported by density functional theory-based calculations that show the amine binding to a gold adatom with sufficient angular flexibility for easy junction formation but well-defined electronic coupling of the N lone pair to the Au. Therefore, the amine linkage leads to well-defined conductance measurements of a single molecule junction in a statistical study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.