Abstract

The diffusion of small, charged molecules incorporated in an anisotropic polyelectrolyte multilayer (PEM) was tracked in three dimensions by combining single-molecule fluorescence localization (to characterize lateral diffusion) with Förster resonance energy transfer (FRET) between diffusing molecules and the supporting surface (to measure diffusion in the surface-normal direction). Analysis of the surface-normal diffusion required model-based statistical analysis to account for the inherently noisy FRET signal. Combining these distinct single-molecule methods, which are inherently sensitive to different length-scales, permitted simultaneous characterization of severely anisotropic diffusion, which was more than three orders of magnitude slower in the surface-normal direction. We hypothesize that the anomalously slow surface-normal diffusion was related to the periodic distribution of charge in the PEM, which created electrostatic barriers. The motion was strongly subdiffusive, with anomalous temporal scaling exponents in lateral and normal directions, suggesting a connection to the transient, random fractal conformation of polymer chains in the film’s matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.