Abstract

Gene expression in metabolic tissues can be regulated at multiple levels, ranging from the control of promoter accessibilities, transcription rates, mRNA degradation rates and mRNA localization. Modulating these processes can differentially affect important performance criteria of cells. These include precision, cellular economy, rapid response and maintenance of DNA integrity. In this review we will describe how distinct strategies of gene regulation impact the trade-offs between the cells' performance criteria. We will highlight tools based on single molecule visualization of transcripts that can be used to measure promoter states, transcription rates and mRNA degradation rates in intact tissues. These approaches revealed surprising recurrent patterns in mammalian tissues, that include transcriptional bursting, nuclear retention of mRNA, and coordination of mRNA lifetimes to facilitate rapid adaptation to changing metabolic inputs. The ability to characterize gene expression at the single molecule level can uncover the design principles of gene regulation in metabolic tissues such as the liver and the pancreas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.