Abstract

Structural and topological data suggest that serine site-specific DNA recombinases exchange duplex DNAs by rigid-body relative rotation of the two halves of the synapse, mediated by a flat protein-protein interaction surface. We present evidence for this rotational motion for a simple serine recombinase, the Bxb1 phage integrase, from a single-DNA-based supercoil-release assay that allows us to follow crossover site cleavage, rotation, religation, and product release in real time. We have also used a two-DNA braiding-relaxation experiment to observe the effect of synapse rotation in reactions on two long molecules. Relaxation and unbraiding are rapid (averaging 54 and 70 turns/s, respectively) and complete, with no discernible pauses. Nevertheless, the molecular friction associated with rotation is larger than that of type-I topoisomerases in a similar assay. Surprisingly we find that the synapse can stay rotationally "open" for many minutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.