Abstract

Second near-infrared (NIR-II, 1000-1700 nm) fluorescence bioimaging has attracted tremendous scientific interest and already been used in many biomedical studies. However, reports on organic NIR-II fluorescent probes for in vivo photoinduced imaging and simultaneous therapy, as well as the long-term tracing of specific biological objects, are still very rare. Herein we designed a single-molecular and NIR-II-emissive theranostic system by encapsulating a kind of aggregation-induced emission luminogen (AIEgen, named BPN-BBTD) with amphiphilic polymer. The ultra-stable BPN-BBTD nanoparticles were employed for the NIR-II fluorescence imaging and photothermal therapy of bladder tumors in vivo. The 785 nm excitation triggered photothermal therapy could completely eradicate the subcutaneous tumor and inhibit the growth of orthotopic tumors. Furthermore, BPN-BBTD nanoparticles were capable of monitoring subcutaneous and orthotopic tumors for a long time (32 days). Single-molecular and NIR-II-emitted aggregation-induced emission nanoparticles hold potential for the diagnosis, precise treatment, and metastasis monitoring of tumors in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.