Abstract

Dual optical frequency comb spectroscopy allows for high speed, broadband measurements without any moving parts. Here, we combine differential chirp downconversion to probe large spectral bandwidths and serrodyne modulation to separate the positive and negative sidebands in a single modulator. As an initial demonstration, we apply this approach to measure a sharp cavity resonance to illustrate the system performance. We then measure methane transitions in the near-infrared and compare the resulting spectra to models based upon the current spectroscopic databases. The serrodyne method has lower hardware requirements compared to many existing approaches, and its simplicity enables a high degree of mutual coherence between the two combs. Further, this method is readily amenable to chip-scale photonic integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.