Abstract
The distributed quantum information processing and hybridization of quantum platforms raises increasing demands on the quality of light-matter interaction and realization of efficient quantum interfaces. This becomes particularly challenging for needed states possessing fundamental quantum non-Gaussian (QNG) aspects. They correspond to paramount resources in most potent applications of quantum technologies. We demonstrate the generation of light with provably QNG features from a warm atomic ensemble in a single-mode regime. The light is generated in a spontaneous four-wave mixing process in the presence of decoherence effects caused by a large atomic thermal motion. Despite its high sensitivity to any excess noise, direct observability of heralded QNG light could be achieved due to a combination of a fast resonant excitation, large spectral bandwidth, and a low absorption loss of resonant photons guaranteed by the source geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.