Abstract

Guided wave-optics has emerged as a promising platform for label free biosensing. However, device sensitivity toward surface-bound small molecules is directly limited by the evanescent interaction and low confinement factor with the active sensing region. Here, we report a mesoporous silicon waveguide design and inverse fabrication technique that resolves the evanescent field interaction limitation while achieving maximal transverse confinement factors and preserving single-mode operation. The waveguide sensors are characterized in a Fabry-Perot interferometer configuration and the ultra-high sensitivity to small molecule adlayers is demonstrated. We also identify dispersion to be a promising degree of freedom for exceeding the sensitivity limits predicted by the conventional non-dispersive effective medium theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.