Abstract

Satellite-based quantum communication is a promising approach for realizing global-scale quantum networks. For free-space quantum channel, single-mode fiber coupling is particularly important for improving the signal-to-noise ratio of daylight quantum key distribution (QKD) and compatibility with standard fiber-based QKD. However, achieving a highly efficient and stable single-mode coupling efficiency under strong atmospheric turbulence remains experimentally challenging. Here, we develop a single-mode receiver with an adaptive optics (AO) system based on a modal version of the stochastic parallel gradient descent (M-SPGD) algorithm and test its performance over an 8 km urban terrestrial free-space channel. Under strong atmospheric turbulence, the M-SPGD AO system obtains an improvement of about 3.7 dB in the single-mode fiber coupling efficiency and a significant suppression of fluctuation, which can find its applications in free-space long-range quantum communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call