Abstract
The behavior of a periodic array of Rayleigh-Taylor bubbles (and spikes) of wavelength lambda is investigated at different density ratios using three-dimensional numerical simulations. The scaled bubble and spike velocities (v(b,s)/sqrt[Aglambda/2]), are found to vary with the Atwood number A, and are compared with recent potential flow theories. Simulations at different grid resolutions reveal that the convergence rates of bubble velocities improve with increasing A, while the converse holds true for spike velocities. The asymptotic radius of curvature at the bubble tip is found to be independent of A, consistent with potential flow theory. These results are useful in validating potential flow theory models of the nonlinear stage of the Rayleigh-Taylor instability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review E
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.