Abstract

Single microchannel high-temperature fiber sensors were fabricated by drilling a microchannel across the fiber core near the end of the common single-mode fiber using femtosecond laser-induced water breakdown. Then the microchannel was annealed by the arc discharge to smooth its inwall. The two sides of microchannel and the end surface of the fiber constitute three reflective mirrors, which form a three-wave Fabry-Pérot interferometer (FPI). The fabricated FPI can be used as a high-temperature sensor in harsh environments due to its large temperature range (up to 1000°C), high linearity, miniaturized size, and perfect mechanical property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.