Abstract

The widely investigated oxygen reduction reaction (ORR) is well-known to proceed via two competing routes, involving two or four electrons, and yielding different reaction products, respectively. Both pathways are believed to share a common, elusive intermediate, namely, the hydroperoxyl radical. By exploiting a cobalt single-atom biomimetic model catalyst, based on a self-assembled monolayer of Co-porphyrins grown on an almost free-standing graphene sheet, we identify, in situ at room temperature in O2+H2O atmosphere, a hydroperoxyl-water cluster that is stabilized at the Co single-metal atom catalytic site. We show that the interplay between charge transfer, dipole and H-bonding, and water solvation behavior actually determines the hydroperoxyl-water complex stability, the Co-OOH bonding geometry, and, prospectively, opens to the engineered control of the selectivity of ORR pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.