Abstract

This letter describes a simple method for three-dimensional microfabrication of complex, high-aspect-ratio structures with arbitrary surface height profiles in bulk silicon. The method relies on the exploitation of reactive ion etching lag to simultaneously define all features using a single lithographic masking step. Modulation of the mask pattern openings used to define the features results in etch depth variation across the pattern, which is then translated into surface height variation through removal of the superstructure above the etched floors. Utilization of a nonisotropic superstructure removal method based on sacrificial oxidation enables definition of high-aspect-ratio structures with vertical sidewalls and fine features. The utility of the approach is demonstrated in the fabrication of a sloping electrode structure for application in a hybrid micromirror device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.