Abstract
We have demonstrated a family of large force and large displacement electrostatic linear inchworm motors that operate with moderate to high voltages. The inchworm motor design decouples actuator force from total travel and allows the use of electrostatic gap-closing actuators to achieve large force and large displacement while consuming low power. A typical inchworm motor measures 3 mm /spl times/ 1 mm /spl times/ 50 /spl mu/m and can lift over 130 times its own weight. One motor has achieved a travel of 80 /spl mu/m and a calculated force of 260 /spl mu/N at 33 V. The force density of that motor was 87 /spl mu/N/mm/sup 2/ at 33 V and the energy efficiency was estimated at 8%. Another motor displaced the shuttle at an average velocity of almost 4 mm/s and achieved an estimated power density of 190 W/m/sup 3/. Motors were cycled 23.6 million times for over 13.5 h without stiction. This family of motors is fabricated in silicon-on-insulator (SOI) wafers using a single mask.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.