Abstract
We study a single-machine stochastic scheduling problem with n jobs, in which each job has a random processing time and a general stochastic cost function which may include a random due date and weight. The processing times are exponentially distributed, whereas the stochastic cost functions and the due dates may follow any distributions. The objective is to minimize the expected sum of the cost functions. We prove that a sequence in an order based on the product of the rate of processing time with the expected cost function is optimal, and under certain conditions, a sequence with the weighted shortest expected processing time first (WSEPT) structure is optimal. We show that this generalizes previous known results to more general situations. Examples of applications to practical problems are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.