Abstract

This paper studies the single-machine multiple-project scheduling problem with controllable processing times, in which the cost of a project refers to the total compression cost of its jobs plus the weighted number of tardy jobs in a schedule satisfying some given precedence constraints. It involves four specific problems: (i) minimizing the total cost of an arbitrary number of projects, (ii) being the same as (i) except the jobs from the same project having a common due date, (iii) having a fixed number of projects and minimizing the cost of one project subject to the cost of each of other projects not exceeding a given threshold, and (iv) being the same as (iii) except all jobs having identical weights. We show that a special version of (i) in which each project has only two jobs and all jobs have unit weights and cannot be compressed is strongly NP-hard (it implies the strong NP-hardness of (i)), (ii) is weakly NP-hard and admits a pseudo-polynomial algorithm and a fully polynomial time approximation scheme, (iii) is pseudo-polynomially solvable by a two-phase transformation, and (iv) is weakly NP-hard even if there are only two projects and all jobs have identical maximum compression amounts and identical processing times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.