Abstract
This paper introduces the serial batching scheduling problems with position-based learning effect, where the actual job processing time is a function of its position. Two scheduling problems respectively for single-machine and parallel-machine are studied, and in each problem the objectives of minimizing maximum earliness and total number of tardy jobs are both considered respectively. In the proposed scheduling models, all jobs are first partitioned into serial batches, and then all batches are processed on the serial-batching machine. We take some practical production features into consideration, i.e., setup time before processing each batch increases with the time, regarded as time-dependent setup time, and we formalize it as a linear function of its starting time. Under the single-machine scheduling setting, structural properties are derived for the problems with the objectives of minimizing maximum earliness and number of tardy jobs respectively, based on which optimization algorithms are developed to solve them. Under the parallel-machine scheduling setting, a hybrid VNS–GSA algorithm combining variable neighborhood search (VNS) and gravitational search algorithm (GSA) is proposed to solve the problems with these two objectives respectively, and the effectiveness and efficiency of the proposed VNS–GSA are demonstrated and compared with the algorithms of GSA, VNS, and simulated annealing (SA). This paper demonstrates that the consideration of different objectives leads to various optimal decisions on jobs assignment, jobs batching, and batches sequencing, which generates a new insight to investigate batching scheduling problems with learning effect under single-machine and parallel-machine settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.