Abstract

The ability to present biomolecules on the highly organized structure of M13 filamentous bacteriophage is a unique advantage. Where previously this viral template was shown to direct the orientation and nucleation of nanocrystals and materials, here we apply it in the context of single-molecule (SM) biophysics. Genetically engineered constructs were used to display different reactive species at each of the filament ends and along the major capsid, and the resulting hetero-functional particles were shown to consistently tether microscopic beads in solution. With this system, we report the development of a SM assay based on M13 bacteriophage. We also report the quantitative characterization of the biopolymer's elasticity by using an optical trap with nanometer-scale position resolution. Expanding the fluctuating rod limit of the wormlike chain to incorporate enthalpic polymer stretching yielded a model capable of accurately capturing the full range of extensions. Fits of the force-extension measurements gave a mean persistence length of approximately 1,265 nm, lending SM support for a shorter filamentous bacteriophage persistence length than previously thought. Furthermore, a predicted stretching modulus roughly two times that of dsDNA, coupled with the system's linkage versatility and load-bearing capability, makes the M13 template an attractive candidate for use in tethered bead architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call