Abstract

Lithium–sulfur batteries have great potential for high-performance energy-storage devices, yet the severe diffusion of soluble polysulfide to electrolyte greatly limits their practical applications. To address the above issues, herein we design and synthesize a novel polymer binder with single lithium-ion channels allowing fast lithium-ion transport while blocking the shuttle of unnecessary polysulfide anions. In situ UV–vis spectroscopy measurements reveal that the prepared polymer binder has effective immobilization to polysulfide intermediates. As expected, the resultant sulfur cathode achieves an excellent specific capacity of 1310 mAh g−1 at 0.2 C, high Coulombic efficiency of 99.5% at 0.5 C after 100 cycles and stable cycling performance for 300 cycles at 1 C (1 C = 1675 mA g−1). This study reports a new avenue to assemble a polymer binder with a single lithium-ion channel for solving the serious problem of energy attenuation of lithium–sulfur batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.