Abstract
Early detection of potential hazards in the fetal physiological state during pregnancy and childbirth is very important. Noninvasive fetal electrocardiogram (FECG) can be extracted from the maternal abdominal signal. However, due to the interference of maternal electrocardiogram and other noises, the task of extraction is challenging. This paper introduces a novel single-lead noninvasive fetal electrocardiogram extraction method based on the technique of clustering and PCA. The method is divided into four steps: (1) pre-preprocessing; (2) fetal QRS complexes and maternal QRS complexes detection based on k-means clustering algorithm with the feature of max-min pairs; (3) FQRS correction step is to improve the performance of step two; (4) template subtraction based on PCA is introduced to extract FECG waveform. To verify the performance of the proposed algorithm, two clinical open-access databases are used to check the performance of FQRS detection. As a result, the method proposed shows the average PPV of 95.35%, Se of 96.23%, and F1-measure of 95.78%. Furthermore, the robustness test is carried out on an artificial database which proves that the algorithm has certain robustness in various noise environments. Therefore, this method is feasible and reliable to detect fetal heart rate and extract FECG. Graphical abstract Early detection of potential hazards in the fetal physiological state during pregnancy and childbirth is very important. Noninvasive fetal electrocardiogram (FECG) can be extracted from maternal abdominal signal. However, due to the interference of maternal electrocardiogram and other noises, the task of extraction is challenging. This paper introduces a novel single-lead noninvasive fetal electrocardiogram extraction method based on the technique of clustering and PCA. The method is divided into four steps: (1) pre-preprocessing; (2) fetal QRS complexes and maternal QRS complexes detection based on k-means clustering algorithm with the feature of max-min pairs; (3) FQRS correction step is to improve the performance of step two; (4) template subtraction based on PCA is introduced to extract FECG waveform. To verify the performance of algorithm, two clinical open-access databases are used to check the performance of FQRS detection. As a result, the method proposed shows the average PPV of 95.35%, Se of 96.23%, and F1-measure of 95.78%. Furthermore, the robustness test is carried out on an artificial database which proves that the algorithm has certain robustness in various noise environments. Therefore, this method is feasible and reliable to detect fetal heart rate and extract FECG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical & Biological Engineering & Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.