Abstract

A novel symmetrical coupled-line circuit structure without patterned ground plane is proposed to design tight-coupling high-directivity couplers, which would be found in numerous applications in a microstrip RF front end because of its simple structure and inherent excellent compatibility. Based on a traditional even- and odd-mode technique, closed-form mathematical equations for both circuit electrical parameters and scattering parameters are obtained. Due to the use of two coupled-line sections placed in the vertical direction, the directivity of this novel coupler without any other compensation techniques can be enhanced while maintaining tight-coupling performance of almost 3 dB. For demonstrative purposes, three typical full-wave simulation examples with realized physical dimensions in microstrip technology are presented, indicating high directivity and tight coupling coefficient. Finally, a practical microstrip coupled-line coupler is designed and fabricated to operate at approximately 2 GHz. The measured results show good return loss, quadrature phase characteristics, high directivity, and strong coupling performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call