Abstract

Abstract Quantum computing holds the potential for quantum advantage in optimization problems, which requires advances in quantum algorithms and hardware specifications. Adiabatic quantum optimization is conceptually a valid solution that suffers from limited hardware coherence times. In this sense, counterdiabatic quantum protocols provide a shortcut to this process, steering the system along its ground state with a fast-changing Hamiltonian. In this work, we take full advantage of a digitized- counterdiabatic quantum optimization (DCQO) algorithm to find an optimal solution for the p-spin model up to 4-local interactions. We choose a suitable scheduling function and initial Hamiltonian such that a single-layer quantum circuit suffices to produce a good ground-state overlap. By further optimizing parameters using variational methods, we solve with unit accuracy 2-spin, 3-spin, and 4-spin problems for 100%, 93%, and 83% of instances, respectively. As a particular case of the latter, we also solve factorization problems involving 5, 9, and 12 qubits. Due to the low computational overhead, our compact approach may become a valuable tool towards quantum advantage in the NISQ era.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.