Abstract

Nanodrug delivery systems are considered as promising therapeutic platforms to convey drugs to tumor cells. In this study, a single layer of carboxymethylcellulose (CMC) and poly N-vinylpyrrolidone (PVP) was cross-linked through disulfide bond and deposited on graphene oxide nanoparticles (GO NPs) using layer-by-layer technique. Overexpression of folate receptors on tumor cells is a great hallmark for drug delivery systems; though the NPs were functionalized by monoclonal folic acid antibody (FA) using polyethylene glycol (PEG) as linker. The mean diameter of synthesized nanoparticles was 60 nm. Curcumin was encapsulated within CMC layer with high encapsulation capacity of 94%. In vitro investigation showed 87% curcumin release at simulated tumor environment. Curcumin loaded FA modified CMC/PVP GO NPs showed high inhibition of 76 and 81% against Saos2 and MCF7 cell lines in vitro. In vivo investigations on 4T1 bearing breast cancer mice model exhibited 76% antitumor efficiency via active targeting mechanism of folate mediated transport without any significant side effect. Immunohistochemistry and immunofluorescence analyses showed enhanced antiangiogenesis, apoptosis and tumor growth inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.