Abstract

Samples of suspended gold nanoparticles in the diameter range 10 to 100 nm were subjected to a single 7 ns pulse from a 532 nm laser to determine the effect of laser power on particle size distribution, mean size, and morphology. The experimental techniques used were dynamic light scattering (DLS), depolarized dynamic light scattering (DDLS), electrospray-differential mobility analysis (ES-DMA), ultraviolet–visible absorption spectroscopy, and transmission electron microscopy (TEM). For 60 nm particles, a laser pulse of fluence 10 mJ/cm2 was sufficient to produce observable changes. In the range 10–72 mJ/cm2, DLS indicated little change in mean particle size but a more than three-fold reduction in the polydispersity index (significantly tightened distribution) and a decrease in scattering intensity. TEM showed that the particles became highly spherical and that there was a growing population of particles <10 nm in size that could not be detected by DLS and ES-DMA. Fused dimers were also observed, which su...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.