Abstract
The objective of the present study was to better understand the effect of the change in the geometry of the adherend corners on the stress distribution in single lap joints and, therefore, on the joint strength. Various degrees of rounding were studied and two different types of adhesives were used: one very brittle and another which had a large plastic deformation. Experimental results on the strength of joints with different degrees of rounding are presented. For joints bonded with brittle adhesives, the effect of the rounded adherend corners is larger than that with ductile adhesives. The strength of joints with brittle adhesives with a large radius adherend corner increases by about 40% compared to that with a sharp adherend corner. It is shown that for joints bonded with brittle adhesives, crack propagation occurs for a short period before it grows into catastrophic failure. However, for ductile adhesives, there is large adhesive yielding and small crack propagation before final failure. Another important feature of joints bonded with ductile adhesives is that there may be more than one crack in the adhesive layer before failure. This makes strength predictions more difficult. The second part of the paper presents an approximate method for predicting the strength of joints bonded with brittle and ductile adhesives, with and without adherend corner rounding. The predictions, based on an average value around the singularity, compare well with the experimental results, especially for joints bonded with ductile adhesives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.