Abstract

The second member of the family of single-isomer sulfated alpha-cyclodextrins, the sodium salt of hexakis(6-O-sulfo)-alpha-cyclodextrin (HxS), has been synthesized, analytically characterized, and used as the resolving agent for the capillary electrophoretic separation of the enantiomers of nonionic, weak-acid and weak-base analytes present in our initial screening kit. HxS interacted less strongly with many of the analytes tested than the larger-ring analogs, heptakis(6-O-sulfo)-beta-cyclodextrin (HS) and octakis(6-O-sulfo)-gamma-cyclodextrin (OS). For some of the analytes, the separation selectivities obtained with HxS were complementary to those observed with hexakis(2,3-di-O-acetyl-6-O-sulfo)-alpha-cyclodextrin (HxDAS), HS, and OS. For all analytes, the effective mobilities and separation selectivities as a function of the background electrolyte concentration of HxS followed the trends that were found for HxDAS, HS, and OS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call