Abstract

A recently proposed thermodynamic integration (TI) approach formulated in the framework of quantum mechanical/molecular mechanical molecular dynamics (QM/MM MD) simulations is applied to study the structure, dynamics, and absolute intrinsic hydration free energy Δs GM+,wat◦ of the Li+ ion at a correlated ab initio level of theory. Based on the results, standard values (298.15 K, ideal gas at 1 bar, ideal solute at 1 molal) for the absolute intrinsic hydration free energy [Formula: see text] of the proton, the surface electric potential jump χwat◦ upon entering bulk water, and the absolute single-electrode potential [Formula: see text] of the reference hydrogen electrode are calculated to be -1099.9 ± 4.2 kJ·mol-1, 0.13 ± 0.08 V, and 4.28 ± 0.04 V, respectively, in excellent agreement with the standard values recommended by Hünenberger and Reif on the basis of an extensive evaluation of the available experimental data (-1100 ± 5 kJ·mol-1, 0.13 ± 0.10 V, and 4.28 ± 0.13 V). The simulation results for Li+ are also compared to those for Na+ and K+ from a previous study in terms of relative hydration free energies ΔΔs GM+,wat◦ and relative electrode potentials [Formula: see text]. The calculated values are found to agree extremely well with the experimental differences in standard conventional hydration free energies ΔΔs GM+,wat• and redox potentials [Formula: see text]. The level of agreement between simulation and experiment, which is quantitative within error bars, underlines the substantial accuracy improvement achieved by applying a highly demanding QM/MM approach at the resolution-of-identity second-order Møller-Plesset perturbation (RIMP2) level over calculations relying on purely molecular mechanical or density functional theory (DFT) descriptions. A detailed analysis of the structural and dynamical properties of the Li+ hydrate indicates that a correct description of the solvation structure and dynamics is achieved as well at this level of theory. Consideration of the QM/MM potential-energy components also shows that the partitioning into QM and MM zones does not induce any significant energetic artifact for the system considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call