Abstract

A mononuclear iron(III) porphyrin compound exhibiting unexpectedly slow magnetic relaxation, which is a characteristic of single-ion magnet behaviour, is reported. This behaviour originates from the close proximity (≈550 cm-1 ) of the intermediate-spin S=3/2 excited states to the high-spin S=5/2 ground state. More quantitatively, although the ground state is mostly S=5/2, a spin-admixture model evidences a sizable contribution (≈15 %) of S=3/2 to the ground state, which as a consequence experiences large and positive axial anisotropy (D=+19.2 cm-1 ). Frequency-domain EPR spectroscopy allowed the mS = |±1/2⟩→|±3/2⟩ transitions to be directly accessed, and thus the very large zero-field splitting in this 3d5 system to be unambiguously measured. Other experimental results including magnetisation, Mössbauer, and field-domain EPR studies are consistent with this model, which is also supported by theoretical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.