Abstract
An integrated single-inductor dual-output boost converter is presented. This converter adopts time-multiplexing control in providing two independent supply voltages (3.0 and 3.6 V) using only one 1-/spl mu/H off-chip inductor and a single control loop. This converter is analyzed and compared with existing counterparts in the aspects of integration, architecture, control scheme, and system stability. Implementation of the power stage, the controller, and the peripheral functional blocks is discussed. The design was fabricated with a standard 0.5-/spl mu/m CMOS n-well process. At an oscillator frequency of 1 MHz, the power conversion efficiency reaches 88.4% at a total output power of 350 mW. This topology can be extended to have multiple outputs and can be applied to buck, flyback, and other kinds of converters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.