Abstract
Quantile regression (QR) has become a popular method of data analysis, especially when the error term is heteroscedastic. It is particularly relevant for the analysis of censored survival data as an alternative to proportional hazards and the accelerated failure time models. Such data occur frequently in biostatistics, environmental sciences, social sciences and econometrics. There is a large body of work for linear/nonlinear QR models for censored data, but it is only recently that the single index quantile regression (SIQR) model has received some attention. However, the only existing method for fitting the SIQR model for censored data uses an iterative algorithm and no asymptotic theory for the resulting estimator of the parametric component is given. We propose a non-iterative estimation algorithm and derive the asymptotic distribution of the proposed estimator under heteroscedasticity. Results from simulation studies evaluating the finite sample performance of the proposed estimator are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.