Abstract

This article proposes an improved learning based super resolution scheme using manifold learning for texture images. Pseudo Zernike moment (PZM) has been employed to extract features from the texture images. In order to efficiently retrieve similar patches from the training patches, feature similarity index matrix (FSIM) has been used. Subsequently, for reconstruction of the high resolution (HR) patch, a collaborative optimal weight is generated from the least square (LS) and non-negative matrix factorization (NMF) methods. The proposed method is tested on some color texture, gray texture, and some standard images. Results of the proposed method on texture images advocate its superior performance over established state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.