Abstract

One of the key problems of restoring a degraded image from motion blur is the estimation of the unknown shift-invariant linear blur filter. Several algorithms have been proposed using image intensity or gradient information. In this paper, we separate the image deblurring into filter estimation and image deconvolution processes, and propose a novel algorithm to estimate the motion blur filter from a perspective of alpha values. The relationship between the object boundary transparency and the image motion blur is investigated. We formulate the filter estimation as solving a maximum a posteriori (MAP) problem with the defined likelihood and prior on transparency. Our unified approach can be applied to handle both the camera motion blur and the object motion blur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.