Abstract

The existing deraining methods based on convolutional neural networks (CNNs) have made great success, but some remaining rain streaks can degrade images drastically. In this work, we proposed an end-to-end multi-scale context information and attention network, called MSCIANet. The proposed network consists of multi-scale feature extraction (MSFE) and multi-receptive fields feature extraction (MRFFE). Firstly, the MSFE can pick up features of rain streaks in different scales and propagate deep features of the two layers across stages by skip connections. Secondly, the MRFFE can refine details of the background by attention mechanism and the depthwise separable convolution of different receptive fields with different scales. Finally, the fusion of these outputs of two subnetworks can reconstruct the clean background image. Extensive experimental results have shown that the proposed network achieves a good effect on the deraining task on synthetic and real-world datasets. The demo can be available at https://github.com/CoderLi365/MSCIANet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.