Abstract
Single image dehazing can benefit many computer vision applications hence has attracted much more attention in recent years. However, it still remains a challenging task due to its double uncertainty of scene transmission and scene radiance. The existing image dehazing methods usually impair edges in the estimated transmission which leads to halo effects in the dehazing results. Besides, most existing methods suffer from noise and artifacts amplification in dense haze region after dehazing. To address these challenges, we propose a transmission adaptive regularized image recovery method for high quality single image dehazing. An initial transmission map is first obtained by a boundary constraint on the haze model. Then it is refined by applying a non-local total variation (NLTV) regularization to keep depth structures while smoothing excessive details. Noticing that the artifacts amplification effect depends on scene transmission, a transmission adaptive regularized recovery method based on NLTV is proposed to simultaneously suppress visual artifacts and preserve image details in the final dehazing result. An efficient alternating optimization algorithm is also proposed to solve the regularization model. Thorough experimental results demonstrate that the proposed method can effectively suppress visual artifacts for degraded hazy images, and yields high-quality results comparative to the state-of-the-art dehazing methods both quantitatively and qualitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.