Abstract

Under foggy or hazy weather conditions, the visibility and color fidelity of outdoor images are prone to degradation. Hazy images can be the cause of serious errors in many computer vision systems. Consequently, image haze removal has practical significance for real-world applications. In this study, we first analyze the inherent weaknesses of the atmospheric scattering model and propose an improvement to address those weaknesses. Then, we present a fast image haze removal algorithm based on the improved model. In our proposed method, the input image is partitioned into several scenes based on the haze thickness. Next, averaging and erosion operations calculate the rough scene luminance map in a scene-wise manner. We obtain the rough scene transmission map by maximizing the contrast in each scene and then develop a way to gently remove the haze using an adaptive method for adjusting scene transmission based on scene features. In addition, we propose a guided total variation model for edge optimization, so as to prevent from the block effect as well as to eliminate the negative effect from the wrong scene segmentation results. The experimental results demonstrate that our method is effective in solving a series of common problems, including uneven illuminance, overenhanced and oversaturated images, and so forth. Moreover, our method outperforms most current dehazing algorithms in terms of visual effects, universality, and processing speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.