Abstract

Abstract: An image captured in rain reduces the visibility quality of image which affects the analytical task like detecting objects and classifying pictures. Hence, image de-raining became important in last few years. Since pictures taken in rain include rain streaks of all sizes, single image de-raining is becoming much difficult issue to solve, which may flow in different direction and the density of each rain streak is different. Rain streaks have a varied effect on various areas of picture, and hence it becomes important for removing rain streak from rainy pictures as rainy images tend to lose its high frequency information; previously many methods were proposed for this purpose but they failed to provide accurate results. Hence we have studied and implemented a supervised machine learning method using convolutional neural network (CNN) algorithm to get more accurate result of rain streak removal from an image captured during rain and in less elapsed time by preserving high rated information of image during removal of rain streak. Keywords: CNN, elapsed time, single image de-raining, supervised machine learning, rain streaks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.