Abstract

The method presented in this paper assumes that the received signal is a linear combination of delayed and attenuated uncorrelated replicas of the source emitted waveform. The set of delays and attenuations, together with the channel environmental conditions, provide sufficient information for determining the source location. If the transmission channel is assumed known, the source location can be estimated by matching the data with the acoustic field predicted by the model conditioned on the estimated delay set. This paper presents alternative techniques that do not directly attempt to estimate time delays from the data but, instead, estimate the subspace spanned by the delayed source signal paths. Source Localization is then done using a family of measures of the distance between that subspace and the subspace spanned by the replicas provided by the model. Results obtained on the INTIMATE'96 data set, in a shallow-water acoustic channel off the coast of Portugal, show that a sound source emitting a 300-800-Hz LFM sweep could effectively be localized in range or depth over an entire day.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.