Abstract

Abstract Pancreatic cancer is a kind of malignant tumor that is difficult to detect in its early stages, developing rapidly and with a 5-year survival rate of only 5% to 10%. Therefore early diagnosis and discovery of pancreatic cancer are very important for the successful treatment of the disease. Here, we report a single hollow-core microstructural fiber (SHC-MSF) biosensor based on a ZEONEX substrate, which has been optimized for the early detection of pancreatic cancer biomarkers. The proposed SHC-MSF biosensor adopts a single-aperture structure to increase the contact range with assay analytes to improve the detection sensitivity. Its biosensing performance was numerically analyzed using a finite element method with a perfect matching layer. Numerical results demonstrated that the proposed MSF-biosensor presented ultra-high sensitivity (bilirubin: 105.55%, glucose: 105.34%, creatinine: 105.67%) and negligible confinement loss (bilirubin: 5.52×10-14 cm-1, glucose: 1.65×10-14 cm-1, creatinine: 5.57×10-14 cm-1) in the range of 0.3~2.0 THz. Moreover, the SHC-MSF biosensor could selectively detect and distinguish cancer markers of different concentrations in the blood to achieve a more accurate diagnosis of pancreatic cancer. Finally, fabrication tolerance analysis of the proposed MSF-biosensor is provided to ensure the feasibility of rapid preparation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.