Abstract

Properties of single heavy flavor baryons in a non-relativistic potential model with colour Coulomb plus a power law confinement potential have been studied using a simple variational method. The ground-state masses of single heavy baryons and the mass difference between the J P = $ {\frac{{3}}{{2}}}$ + and J P = $ {\frac{{1}}{{2}}}$ + states are computed using a spin-dependent two-body potential. Using the spin-flavour structure of the constituting quarks and by defining an effective confined mass of the constituent quarks within the baryons, the magnetic moments are computed. The masses and magnetic moments of the single heavy baryons are found to be in accordance with the existing experimental values and with other theoretical predictions. It is found that an additional attractive interaction of the order of -200 MeV is required for the antisymmetric states of $ \Lambda_{{Q}}^{}$ (Q $ \in$ c, b) . It is also found that the spin-hyperfine interaction parameters play a decisive role in hadron spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.