Abstract

Determining the age of glacigenic sediments is difficult for many geochronological methods because of the lack of suitable materials for analysis. Luminescence dating can be applied to the mineral grains making up the glacigenic sediments. However a major source of uncertainty in previous studies has been whether the mineral grains were exposed to sufficient daylight prior to deposition for the luminescence signal to be reset. Measurements of the optically stimulated luminescence signal from single sand-sized quartz grains offers the potential for explicitly identifying if a sediment contains grains that were not exposed to sufficient daylight to reset their signal. Statistical analysis of the resulting data can then reject those grains to allow the age of the sample to be determined. This study is the first to apply single grain optical dating to glacigenic sediments, and demonstrates the issues involved by analysis of samples from Chile and Scotland. Ages from 2.4±0.5 to 17.3±1.5 ka are produced. Comparison of the results with independent age control suggests that the ages are reliable. The results also show that the extent of bleaching at deposition varies considerably from one sample to another. For the most incompletely bleached sample, luminescence measurements based on the average of many hundreds or thousands of grains would have overestimated the age of the sample by ∼60 ka, but the single grain method proposed here was able to reliably date it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call