Abstract

Development of new hot spots for surface enhanced Raman scattering (SERS) technique is of great significance recently. Herein, we developed a single Au nanowire (NW)-based nanosensor for adenosine triphosphate (ATP) sensing by using in-situ SERS technique. Single Au NWs, fabricated by laser-assisted pulling method and hydrofluoric acid (HF) etching process, were linked with single-stranded HS-terminated DNA. After that, gold-silver bimetallic nanoparticles (Au/Ag NPs), attached with thiol-containing Raman dyes and ATP aptamer, were immobilized on DNA-modified single AuNW due to the designed affinity between ATP aptamer and single-stranded DNA. This single AuNW-based device exhibited strong SERS signals. In the presence of adenosine triphosphate (ATP), due to the strong specific affinity between the aptamer and the target, the Au/Ag NPs will be separated from the AuNW, resulting in the obvious decrease of the Raman signals, which can be used for ATP sensing with high sensitivity, selectivity and stability. This nanosensor can be used as an ideal platform for real applications, especially at some confined-space samples, such as trace detection, single cell and in vivo analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call